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A new efficient method for the synthesis of 1,1 -disubstituted bis-cyclopropanes is described, which
involves treatment of 2-alkyn-1-ols with trialkylaluminium and diiodomethane.
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Scheme 1. The synthesis of bis-cyclopropanes from propargylic alcohols.

Table 1
The synthesis of bis-cyclopropanes from propargylic alcoholsa

Entry R R0 R1 R2 Bis-cyclopropane GC yield (%)

1 n-C6H13 Et H H 1a 77
2 n-Bu Et H H 1b 87
3 n-C5H11 Et H H 1c 89
4 Ph Et H H 1d 72
5 n-Bu Et Me H 1e 81
6 n-Bu Et n-Pr H 1f 68
7 n-Bu i-Bu H H 1g 85
8 Ph i-Bu H H 1h 74
9 n-Bu Me H H 1i —

10 n-Bu Et Me Me 1j —
10 n-Bu Et Me Me 1j —
11 H Et H H 1k —
12 H Et n-Pr H 1l —
We have previously reported the reaction of alkyl- and phenyl-
substituted alkynes with CH2I2–Et3Al which gave cyclopropylic
compounds.1 To extend the scope of this transformation, we exam-
ined the reaction of heteroatom-substituted acetylenic compounds
with CH2I2 in the presence of trialkylaluminiums.

Here we report a convenient and versatile one-pot method for the
synthesis of bis-cyclopropanes from readily available substituted
propargylic alcohols, CH2I2 and trialkylaluminiums (Scheme 1).

The identification of polycyclopropanated natural compounds2

and their biological activity3 has promoted studies on the develop-
ment of stereoselective methods to prepare polycyclopropanes.4

The Simmons-Smith reaction is widely used for the preparation
of 2,20-disubstituted bis-cyclopropanes.5

The reaction of 2-nonyn-1-ol with CH2I2 and Et3Al in CH2Cl2

gave 1-ethyl-10-hexyl-bis-cyclopropane 1a in 77% yield after 3 h
at room temperature (Table 1, entry 1).6 The reaction proceeds in
hexane but does not occur in ethereal solvents (tetrahydrofuran
and diethyl ether).

The complete structure elucidation of bis-cyclopropane 1a was
carried out by a variety of NMR correlation methods (COSY, HSQC
and HMBC).7

The alkyl- and phenyl-substituted propargylic alcohols
RC„CCH2OH (where R = n-Bu, n-Am, Ph) reacted in the same
way to give the products 1b–d. 2-Alkyl-substituted 2-alkyn-1-ols
(3-octyn-2-ol, 5-decyn-4-ol) gave mixtures of regioisomeric bis-
cyclopropanes in 1:1 ratios in 81% (1e) and 68% (1f) overall yields.
On the other hand, a 2,2-dimethyl-substituted 2-alkyn-1-ol (2-
methyl-3-octyn-2-ol) did not react with CH2I2–Et3Al. The terminal
propargylic alcohols (propargylic alcohol, 3-methyl-1-pentyn-3-ol,
1-ethynylcyclohexanol and 1-hexyn-3-ol) and their esters (2-pro-
pyn-1-yl acetate and 2-propyn-1-yl propionate) did not afford
Elsevier Ltd.

(I.R. Ramazanov).
expected bis-cyclopropanes 1k–n. 2-Butyn-1,4-diol and its
dimethyl ether were not active in this reaction. However, the
methyl ether of 2-nonyn-1-ol gave bis-cyclopropane 1a in 82%
yield. Hence, the chemistry of substituted propargylic alcohols,
their esters and ethers is the same in this reaction.
13 H Et Me Et 1m —
14 H Et –(CH2)5– 1n —
15 CH2OH Et H H 1o —

a Reaction conditions: alkyne:CH2I2:R3Al = 1:5:6, CH2Cl2, 20–25 �C.
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Scheme 2. A possible mechanism for the transformation.
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The use of i-Bu3Al instead of Et3Al resulted in the formation of
iso-butyl-substituted bis-cyclopropanes 1g, h in high yields (74–
85%). However, the reaction of 2-heptyn-1-ol with CH2I2–Me3Al
did not give the expected methyl-substituted bis-cyclopropane
1i. The reaction of 2-nonyn-1-ol with CH2I2 in the presence of
i-Bu2AlH, i-Bu2AlCl or Et2AlCl did not proceed.

We assume that mechanistically the generation of dial-
kyl(iodomethyl)aluminium8 occurs initially followed by carboa-
lumination of the propargylic alcohol with the formation of
iodo-containing alkenylaluminium A9 (Scheme 2). Rearrange-
ment under the action of R03Al affords unsaturated organoalu-
minium compound B. Cyclopropanation of the double bond10

and elimination of (R02Al)2O give substituted vinylcyclopropane
D. Finally, cyclopropanation of the latter leads to the formation
of substituted bis-cyclopropane 1.

We carried out the reaction of 2-nonyn-1-ol with CD2I2 and
Et3Al to confirm the proposed mechanism (Scheme 3) and obtained
the corresponding deuterated bis-cyclopropane. The positions of
the deuterium atoms in the product were determined by compar-
ison of its 1H and 13C NMR spectra with those of 1a and were as
expected.

As follows from the mechanism, the low reactivity of terminal
propargylic alcohols and 2-methyl-3-octyn-2-ol in this reaction
could result from hindered carboalumination of the triple bond
by dialkyl(iodomethyl)aluminium. We assume that the low reac-
tivity of terminal propargylic alcohols was caused predominantly
by electronic factors,11 whereas in the case of the 2,2-disubstituted
2-alkyn-1-ol, it may be explained by steric hindrance. As noted
above, Me3Al did not react with propargylic alcohols probably as
a result of its low reactivity12 with CH2I2 and its greater tendency
to form aggregates (compared to Et3Al and i-Bu3Al).13 The same is
true for Bu2AlH, i-Bu2AlCl and Et2AlCl.
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