Tetrahedron Letters 50 (2009) 4233-4235

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

The synthesis of 1,1'-disubstituted bis-cyclopropanes by the reaction of substituted propargylic alcohols with $CH_2I_2-R_3Al$

Ilfir R. Ramazanov^{a,*}, Alsu V. Yumagulova^a, Usein M. Dzhemilev^a, Oleg M. Nefedov^{b,†}

^a Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation ^b N.D. Zelinskii Institute of Organic Chemistry of Russian Academy of Sciences, 47 Lenin Prosp., Moscow 117913, Russian Federation

ARTICLE INFO

Article history: Received 24 February 2009 Revised 23 April 2009 Accepted 28 April 2009 Available online 3 May 2009

ABSTRACT

A new efficient method for the synthesis of 1,1'-disubstituted bis-cyclopropanes is described, which involves treatment of 2-alkyn-1-ols with trialkylaluminium and diiodomethane. © 2009 Published by Elsevier Ltd.

We have previously reported the reaction of alkyl- and phenylsubstituted alkynes with $CH_2I_2-Et_3Al$ which gave cyclopropylic compounds.¹ To extend the scope of this transformation, we examined the reaction of heteroatom-substituted acetylenic compounds with CH_2I_2 in the presence of trialkylaluminiums.

Here we report a convenient and versatile one-pot method for the synthesis of bis-cyclopropanes from readily available substituted propargylic alcohols, CH₂I₂ and trialkylaluminiums (Scheme 1).

The identification of polycyclopropanated natural compounds² and their biological activity³ has promoted studies on the development of stereoselective methods to prepare polycyclopropanes.⁴ The Simmons-Smith reaction is widely used for the preparation of 2,2'-disubstituted bis-cyclopropanes.⁵

The reaction of 2-nonyn-1-ol with CH_2I_2 and Et_3Al in CH_2CI_2 gave 1-ethyl-1'-hexyl-bis-cyclopropane **1a** in 77% yield after 3 h at room temperature (Table 1, entry 1).⁶ The reaction proceeds in hexane but does not occur in ethereal solvents (tetrahydrofuran and diethyl ether).

The complete structure elucidation of bis-cyclopropane **1a** was carried out by a variety of NMR correlation methods (COSY, HSQC and HMBC).⁷

The alkyl- and phenyl-substituted propargylic alcohols $RC \equiv CCH_2OH$ (where R = n-Bu, n-Am, Ph) reacted in the same way to give the products **1b–d**. 2-Alkyl-substituted 2-alkyn-1-ols (3-octyn-2-ol, 5-decyn-4-ol) gave mixtures of regioisomeric biscyclopropanes in 1:1 ratios in 81% (**1e**) and 68% (**1f**) overall yields. On the other hand, a 2,2-dimethyl-substituted 2-alkyn-1-ol (2-methyl-3-octyn-2-ol) did not react with CH_2l_2 -Et₃Al. The terminal propargylic alcohols (propargylic alcohol, 3-methyl-1-pentyn-3-ol, 1-ethynylcyclohexanol and 1-hexyn-3-ol) and their esters (2-propyn-1-yl acetate and 2-propyn-1-yl propionate) did not afford

expected bis-cyclopropanes **1k-n**. 2-Butyn-1,4-diol and its dimethyl ether were not active in this reaction. However, the methyl ether of 2-nonyn-1-ol gave bis-cyclopropane **1a** in 82% yield. Hence, the chemistry of substituted propargylic alcohols, their esters and ethers is the same in this reaction.

Scheme 1. The synthesis of bis-cyclopropanes from propargylic alcohols.

Table 1The synthesis of bis-cyclopropanes from propargylic alcohols^a

Entry	R	R′	\mathbb{R}^1	\mathbb{R}^2	Bis-cyclopropane	GC yield (%)
1	n-C ₆ H ₁₃	Et	Н	Н	1a	77
2	n-Bu	Et	Н	Н	1b	87
3	$n-C_5H_{11}$	Et	Н	Н	1c	89
4	Ph	Et	Н	Н	1d	72
5	n-Bu	Et	Me	Н	1e	81
6	n-Bu	Et	n-Pr	Н	1f	68
7	n-Bu	<i>i</i> -Bu	Н	Н	1g	85
8	Ph	<i>i-</i> Bu	Н	Н	1h	74
9	n-Bu	Me	Н	Н	1i	-
10	n-Bu	Et	Me	Me	1j	-
10	n-Bu	Et	Me	Me	1j	-
11	Н	Et	Н	Н	1k	-
12	Н	Et	n-Pr	Н	11	-
13	Н	Et	Me	Et	1m	-
14	Н	Et	-(CH ₂) ₅ -		1n	-
15	CH ₂ OH	Et	Н	Н	10	-

Reaction conditions: alkyne: $CH_2I_2:R_3AI = 1:5:6$, CH_2CI_2 , 20–25 °C.

^{*} Corresponding author. Tel./fax: +7 347 284 2750.

E-mail addresses: iramazan@inbox.ru, ink@anrb.ru (I.R. Ramazanov). [†] Fax: +7 095 135 5328.

^{0040-4039/\$ -} see front matter © 2009 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2009.04.114

 $CH_2I_2 + R'_3AI \longrightarrow R'_2AICH_2I + R'I$

Scheme 2. A possible mechanism for the transformation.

Scheme 3. The reaction of 2-nonyn-1-ol with CD₂I₂ and Et₃Al.

The use of *i*-Bu₃Al instead of Et₃Al resulted in the formation of *iso*-butyl-substituted bis-cyclopropanes **1g**, **h** in high yields (74–85%). However, the reaction of 2-heptyn-1-ol with CH_2I_2 –Me₃Al did not give the expected methyl-substituted bis-cyclopropane **1i**. The reaction of 2-nonyn-1-ol with CH_2I_2 in the presence of *i*-Bu₂AlH, *i*-Bu₂AlCl or Et₂AlCl did not proceed.

We assume that mechanistically the generation of dialkyl(iodomethyl)aluminium⁸ occurs initially followed by carboalumination of the propargylic alcohol with the formation of iodo-containing alkenylaluminium A^9 (Scheme 2). Rearrangement under the action of R'_3Al affords unsaturated organoaluminium compound **B**. Cyclopropanation of the double bond¹⁰ and elimination of $(R'_2Al)_2O$ give substituted vinylcyclopropane **D**. Finally, cyclopropanation of the latter leads to the formation of substituted bis-cyclopropane **1**.

We carried out the reaction of 2-nonyn-1-ol with CD_2I_2 and Et_3AI to confirm the proposed mechanism (Scheme 3) and obtained the corresponding deuterated bis-cyclopropane. The positions of the deuterium atoms in the product were determined by comparison of its ¹H and ¹³C NMR spectra with those of **1a** and were as expected.

As follows from the mechanism, the low reactivity of terminal propargylic alcohols and 2-methyl-3-octyn-2-ol in this reaction could result from hindered carboalumination of the triple bond by dialkyl(iodomethyl)aluminium. We assume that the low reactivity of terminal propargylic alcohols was caused predominantly by electronic factors,¹¹ whereas in the case of the 2,2-disubstituted 2-alkyn-1-ol, it may be explained by steric hindrance. As noted above, Me₃Al did not react with propargylic alcohols probably as a result of its low reactivity¹² with CH₂I₂ and its greater tendency to form aggregates (compared to Et₃Al and *i*-Bu₃Al).¹³ The same is true for Bu₂AlH, *i*-Bu₂AlCl and Et₂AlCl.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research and the Government of Bashkortostan Republic (Grant No. 08-03-97007), Ministry of Science and Education of Russian Federation (Grant NSc 2349.2008.3), which are gratefully acknowledged.

References and notes

- (a) Dzhemilev, U. M.; Ramazanov, I. R.; Ibragimov, A. G.; Dyachenko, L. I.; Lukjyanova, M. P.; Nefedov, O. M. *J. Organomet. Chem.* **2001**, 636, 91; (b) Ramazanov, I. R.; Lukyanova, M. P.; Sharipova, A. Z.; Ibragimov, A. G.; Dzhemilev, U. M.; Nefedov, O. M. *Russ. Chem. Bull.* **2001**, 50, 1406.
- (a) Yoshida, M.; Ezaki, M.; Hashimoto, M.; Yamashita, M.; Shigematsu, N.; Okuhara, M.; Kohsaka, M.; Horikoshi, K.J. Antibiot. **1990**, *43*, 748; (b) Kuo, M. S.; Zielinski, R. J.; Cialdella, J. I.; Marschke, C. K.; Dupuis, M. J.; Li, G. P.; Kloosterman, D. A.; Spilmann, C. H.; Marshall, V. P. J. Am. Chem. Soc. **1995**, *117*, 10629.
- (a) Barrett, A. G. M.; Kasdorf, K.; Williams, D. J. *J. Chem. Soc., Chem. Commun.* 1994, 1781; (b) Barrett, A. G. M.; Doubleday, W. W.; Tustin, G. J.; White, A. J. P.; Williams, D. J. *J. Chem. Soc., Chem. Commun.* 1994, 1783.
- (a) Barrett, A. G. M.; Hamprecht, D.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1996, 118, 7863; (b) Barrett, A. G. M.; Kasdorf, K. J. Am. Chem. Soc. 1996, 118, 11030; (c) Cebula, R. E. J.; Hanna, M. R.; Theberge, C. R.; Verbicky, C. A.; Zercher, C. K. Tetrahedron Lett. 1996, 37, 8341; (d) Charette, A. B.; Lebel, H. J. Am. Chem. Soc. 1996, 118, 10327; (e) Verbicky, C. A.; Zercher, C. K. Tetrahedron Lett. 2000, 41, 8723; (f) Luithle, J. E. A.; Pietruszka, J. J. Org. Chem. 2000, 65, 9194.
- (a) Harker, A. Angew. Chem. 1967, 79, 103; (b) Effenberger, F.; Podszun, W. Angew. Chem. 1969, 81, 1046.
- 6. Synthesis of 1-ethyl-1'-hexyl-bis-cyclopropane (**1a**): To a solution of 2-nonyn-1ol (0.42 g, 3 mmol) and diiodomethane (4.02 g, 15 mmol) in CH₂Cl₂ (15 mL), triethylaluminium (2.7 mL, 18 mmol) was added at 0 °C under an argon atmosphere. The mixture was stirred at room temperature for 3 h. The reaction was terminated by dilution with CH₂Cl₂ (20 mL) followed by treatment with a 7 wt% aq solution of HCl. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were then washed with saturated NaHCO₃ solution and dried over anhydrous CaCl₂. The solvent was removed under reduced pressure and the residue distilled to yield 0.40 g of an oily product (69% isolated yield, 77% GC yield). Bp 67–70 °C (1 Torr).
- 7. The ¹H NMR spectrum of **1a** in CDCl₃ shows an AA'BB' multiplet for the cyclopropyl hydrogen atoms at 0.05–0.15 ppm which is typical for unsymmetrical 1,1-disubstituted cyclopropanes. The spectral parameters of the AA'BB' multiplet are not discussed due to overlapping of the signals of the two cyclopropane fragments. The APT spectrum of **1a** shows resonances due to the CH₂ groups of two three-membered cycles at 9.10 and 9.20 ppm. There are four cross peaks in the HMBC spectrum between the hydrogen atoms of (10)H₃ and carbon C(8). ¹H NMR (δ , ppm): 0.05–0.15 (m, 8H, C(11–14)H₂), 0.90 (t, ³J_{CH} = 7.0 Hz, 3H, C(1)H₃, 0.96 (t, ³J_{CH} = 7.4 Hz, 3H, C(10)H₃), 1.2–1.5 (m, 12H, C(2–6,9)H₂). ¹³C NMR (δ , ppm): 9.10 and 9.20 (4C, C(11–14)), 1.113 (C(10)), 14.05 (C(1)), 20.06 (C(7)), 20.69 (C(8)), 22.70 (C(2)), 26.79 (C(5)), 29.81 (C(9)), 29.91 (C(4)), 31.96 (C(3)), 37.24 (C(6)) EIMS m/z (relative intensity, %): 194 (1)

$$\label{eq:masses} \begin{split} [M]^*, \ 166 \ (65) \ [M-C_2H_4]^*, \ 137 \ (20), \ 123 \ (17), \ 109 \ (51), \ 96 \ (53), \ 95 \ (70), \ 81 \\ (100). \ Anal. \ Calcd \ for \ C_{14}H_{26}: \ C, \ 86.52; \ H, \ 13.48. \ Found: \ C, \ 86.89; \ H, \ 13.11. \end{split}$$

8. Miller, D. B. Tetrahedron Lett. 1964, 989.

- Hoberg, H. *Liebigs Ann.* **1962**, 656, 1.
 Maruoka, K.; Fukutani, Y.; Yamamoto, H. *J. Org. Chem.* **1985**, 50, 4412.
 In the case of 1-ethynylcyclohexanol, deuterolysis of the reaction mixture did not result in 1-(deuteroethynyl)cyclohexanol which indicates that metallation
- Treatment of CH₂I₂ with Et₃Al or *i*-Bu₃Al (1:1 molar ratio) in CH₂Cl₂ at room temperature resulted in the disappearance of CH₂I₂ in 5 min due to aluminium carbenoid formation. In the case of Me₃Al, the conversion of CH_2I_2 was 73% after 2 h.
- 13. Smith, M. B. J. Organomet. Chem. **1972**, 46, 31.